Receptor-independent Role of Urokinase-Type Plasminogen Activator in Pericellular Plasmin and Matrix Metalloproteinase Proteolysis during Vascular Wound Healing in Mice
نویسندگان
چکیده
It has been proposed that the urokinase receptor (u-PAR) is essential for the various biological roles of urokinase-type plasminogen activator (u-PA) in vivo, and that smooth muscle cells require u-PA for migration during arterial neointima formation. The present study was undertaken to evaluate the role of u-PAR during this process in mice with targeted disruption of the u-PAR gene (u-PAR-/-). Surprisingly, u-PAR deficiency did not affect arterial neointima formation, neointimal cell accumulation, or migration of smooth muscle cells. Indeed, topographic analysis of arterial wound healing after electric injury revealed that u-PAR-/- smooth muscle cells, originating from the uninjured borders, migrated over a similar distance and at a similar rate into the necrotic center of the wound as wild-type (u-PAR+/+) smooth muscle cells. In addition, u-PAR deficiency did not impair migration of wounded cultured smooth muscle cells in vitro. There were no genotypic differences in reendothelialization of the vascular wound. The minimal role of u-PAR in smooth muscle cell migration was not because of absent expression, since wild-type smooth muscle cells expressed u-PAR mRNA and functional receptor in vitro and in vivo. Pericellular plasmin proteolysis, evaluated by degradation of 125I-labeled fibrin and activation of zymogen matrix metalloproteinases, was similar for u-PAR-/- and u-PAR+/+ cells. Immunoelectron microscopy of injured arteries in vivo revealed that u-PA was bound on the cell surface of u-PAR+/+ cells, whereas it was present in the pericellular space around u-PAR-/- cells. Taken together, these results suggest that binding of u-PA to u-PAR is not required to provide sufficient pericellular u-PA-mediated plasmin proteolysis to allow cellular migration into a vascular wound.
منابع مشابه
Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis.
Extracellular proteolysis is an absolute requirement for new blood vessel formation (angiogenesis). This review examines the role of the matrix metalloproteinase (MMP) and plasminogen activator (PA)-plasmin systems during angiogenesis. Specifically, a role for gelatinases (MMP-2, MMP-9), membrane-type 1 MMP (MMP-14), the urokinase-type PA receptor, and PA inhibitor 1 has been clearly defined in...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Proteolysis of the urokinase-type plasminogen activator receptor by metalloproteinase-12: implication for angiogenesis in fibrin matrices
Pericellular proteolysis plays an important role in cell migration and the formation of new capillary structures. The plasminogen activator/plasmin and matrix degrading metalloproteinase (MMP) cascades act together in the remodeling of matrix and cell-matrix contacts. Previously we have shown that the formation of capillary structures by human foreskin microvascular endothelial cells (hMVECs) i...
متن کاملPlasminogen activation independent of uPA and tPA maintains wound healing in gene-deficient mice.
Simultaneous ablation of the two known activators of plasminogen (Plg), urokinase-type (uPA) and the tissue-type (tPA), results in a substantial delay in skin wound healing. However, wound closure and epidermal re-epithelialization are significantly less impaired in uPA;tPA double-deficient mice than in Plg-deficient mice. Skin wounds in uPA;tPA-deficient mice treated with the broad-spectrum ma...
متن کاملLRP-1: A Checkpoint for the Extracellular Matrix Proteolysis
Low-density lipoprotein receptor-related protein-(LRP-1) is a large endocytic receptor that binds more than 35 ligands and exhibits signaling properties. Proteinases capable of degrading extracellular matrix (ECM), called matrix proteinases in this paper, are mainly serine proteinases: the activators of plasminogen into plasmin, tissue-type (tPA) and urokinase-type (uPA) plasminogen activators,...
متن کاملThe NuRD Chromatin-Remodeling Enzyme CHD4 Promotes Embryonic Vascular Integrity by Transcriptionally Regulating Extracellular Matrix Proteolysis
The extracellular matrix (ECM) supports vascular integrity during embryonic development. Proteolytic degradation of ECM components is required for angiogenesis, but excessive ECM proteolysis causes blood vessel fragility and hemorrhage. Little is understood about how ECM proteolysis is transcriptionally regulated during embryonic vascular development. We now show that the NuRD ATP-dependent chr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 140 شماره
صفحات -
تاریخ انتشار 1998